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INTRODUCTION 



Electromagnetic Metamaterials 

Natural Materials Bulk Metamaterial 

Planar Metamaterial 

𝜖, 𝜇 
𝜖𝑒𝑓𝑓 , 𝜇𝑒𝑓𝑓 

𝑍𝑒𝑓𝑓 

+ 
- 

- - 

• Natural materials rely on atomic/molecular 
interactions described by permittivity 𝜖, and 
permeability 𝜇. 

• Metamaterials are artificial structures that can 
be engineered to exhibit extraordinary 
electromagnetic properties 
• Bulk metamaterials rely on interaction 

with sub-wavelength structures described 
by effective permittivity and permeability 

• Planar metamaterials (metasurfaces) are 
described by effective surface impedances 

< 𝜆 

< 𝜆 



Artificial Magnetic Conductors (AMC) 

𝑍𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
𝑗𝜔𝐿

1 − 𝜔2𝐿𝐶
 

𝜔0 =
1

𝐿𝐶
 



• Extend the utility of static metamaterial structures and can alleviate bandwidth 
limitations and fabrication tolerances 

• Offer analogous functionality to reflect-array antennas for beam steering 
• Tuning typically achieved using varactor diodes 

Previous Reflectarray Designs  



Previous Reflectarray Designs  

• Design with 320° of phase 
agility at ~5.8 GHz 

• Little consideration given to 
power handling 

• Significant loss from tuning 
elements (varactors) 



Metamaterial Reflect-Array 

• Metasurfaces can provide the same 
functionality as conventional reflect-arrays but 
in a compact and cost-effective system 

• Synthesis of a metasurface reflect-array is 
based on fundamental design equations for 
typical antenna arrays 

 

 

 

 

 

 

• Desirable to maximize reflection phase angle 
tuning range (maximum of 360 degrees) with 
minimal absorption (maximized 𝑆11) 

 

Steerable Metasurface Reflect-Array 

𝐴𝑟𝑟𝑎𝑦 𝐹𝑎𝑐𝑡𝑜𝑟𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
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Ψ𝑥 = 𝑘𝑑𝑥𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝛽𝑥 

Ψ𝑦 = 𝑘𝑑𝑦𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 + 𝛽𝑦  
𝛽 ≝ 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑝ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡 

𝜃 = 00, 𝜙 = 00 

𝜃 = 600, 𝜙 = 300 



High Power Considerations / Motivation 

• Technical challenges 

– Size, weight, and power/gain (SWaP) of sources and antennas 

– Reliability and affordability of high power system 
implementation and  integration 

• Static metasurfaces 

– Limited by dielectric breakdown 

– Strong field enhancement at capacitive gaps 

– Avoid designs that strongly rely on resonance 

• Tunable metasurfaces 

– Limited by power handling of tunable components 

• Typical tuning methods (varactor-based) insufficient for high-power 
applications (due to voltage breakdown) 

• Require tuning/reconfiguring method capable of withstanding high 
voltage levels 

– Steering time (electrical vs. mechanical) 

– Operate away from resonance 

• Our objective is to present tunable metasurface designs 
capable of operating at higher power levels than previously 
demonstrated 

– Electrically tunable designs (PIN diode network, mini-cell 
varactor diodes) 

– Mechanically reconfigurable design (reconfigurable ground 
plane) 

Diode Capacitance @ 1 MHz 

Peak reverse voltage: 35 V 

Reverse Bias Voltage (V) 
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Infineon BB837 Series Varactor 



ELECTRICALLY TUNABLE 

High Power Systems 



Static Metasurface Design 

𝜔0 =
1

𝐿𝐶
 

𝑍𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
𝑗𝜔𝐿

1 − 𝜔2𝐿𝐶
 

ℎ = 0.635 𝑐𝑚 

𝑤 = 2.3 𝑐𝑚 

𝑢 = 2.5 𝑐𝑚 

• Fundamental design is based on the well-known 
Sievenpiper AMC mushroom structure 

• Described by an effective surface impedance 

• Static metasurface dimensions were selected such that it 
resonates in the desired frequency range 

• Tuning achieved by altering capacitance between unit 
cells 

FR4 

90° 𝐵𝑊  𝑜𝑓 ~15 𝑀𝐻𝑧 

𝑀𝑒𝑡𝑎𝑙𝑙𝑖𝑐 𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑙𝑎𝑛𝑒 



PIN Diode Network Metasurface - Design 

RF PIN Diodes Peak Reverse Voltage (V) 

M/A-COM MA4P505 500 

Skyworks CLA4609 250 

Skyworks SMP1352 200 

Avago HSMP389x 100 

• Since tuning relies on varying capacitance we can 
replace varactor diodes with a capacitor network 

• Ceramic capacitors can withstand voltages in 
excess of 1 𝑘𝑉 

• Capacitor network controlled by RF PIN diode 
switches (for high speed and reliability), which 
can withstand much higher voltage levels than 
varactor diodes 

• Total inter-cell capacitance can be reconfigured 
with 2𝑁 possible discrete values 

• Mounting beneath the ground plane with vias 
frees network for expansion 

• Limited by cost, complexity, non-ideal parasitics 



PIN Diode Network Metasurface - Analysis 

PEC 

FR4 

@ 1 𝐺𝐻𝑧 

• Metasurface simulated using Ansys HFSS 

• Single unit cell with periodic boundary conditions 

• Normal plane wave excitation 

• Linear parametric sweep of lumped capacitance values 
(rather than discrete values of PIN network) 

• Reflection phase tuning range of approximately 300 
degrees over a change in capacitance of 3.0 pF 

• The capacitor network samples the reflection phase 
angle curve below 

• Minimal absorption over band (maximum energy 
coupling at resonance) 

𝑘  

𝐸  
𝐻  

RLC 



PIN Diode Network Metasurface – Power Analysis 

Complex Magnitude of Electric Field 

65 𝑊/𝑈𝐶 

Diode 
Peak Reverse 

Voltage 
(V) 

Max Source 
Power 

(W/Unit Cell) 

M/A-COM MA4P505 
(PIN) 

500 30 

Skyworks SMP1352 
(PIN) 

200 7.5 

Avago HSMP389x 
(PIN) 

100 1.9 

Infineon BB837 
(Varactor) 

35 0.25 

• Incident wave induces fields on metasurface 

• Structure features strong field 
enhancement across lumped element 

• Operating power levels limited by voltage 
tolerance across tuning element 

• Typical varactor diode implementation has 
limited power tolerance (0.25 W/unit cell) 

• PIN diode network greatly extends operating 
power levels 

@ 1 𝐺𝐻𝑧 



Varactor Tunable Metasurface - Design 

1.5 𝑐𝑚 

0.5 𝑐𝑚 

@ 1 𝐺𝐻𝑧 

• The complexity of implementing a PIN network tunable metasurface is undesirable 

• An alternative varactor diode implementation is plausible (more restrictive in power than 
PIN network) 

• Reflection phase angle of metasurface primarily dictated by the lumped capacitance 
between unit cells 

• Metasurface functionality does not rely on resonance 

• Same performance can be achieved from a smaller unit cell 

• Decreasing the cell size along the E-field polarization direction increases power handling 
capability 

• Decreasing dimension by two doubles maximum power per unit cell (to 0.5W/Unit Cell) 

At resonance 



MECHANICALLY 
RECONFIGURABLE 

High Power Systems 



Reconfigurable Super Cell  - Design 

• Mechanical tuning offers possibility for 
operating at even higher power levels 

• Varying the metasurface thickness over the 
ground plane alters the inductance and thus 
the surface impedance and resonance 
frequency [3] 

• Ground plane can be reconfigured with 
miniaturized actuators or MEMs devices 

• To reduce cost and complexity, it is possible to 
simultaneously reconfigure several adjacent 
cells equivalently as a single “super cell” 

• Further discretizing the gradient reflection 
phase across a metasurface reflect-array  
reduces performance. However, the super cell 
size can be chosen accordingly to meet 
performance constraints 

[3] D. F. Sievenpiper, J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, “Two-dimensional Beam Steering Using an Electrically Tunable Impedance Surface,” IEEE Trans. Antennas Propag., vol. 
51, no. 10, pp. 2713–2722, 2003.  

∆ℎ1 

∆ℎ2 

∆ℎ𝑛 



Reconfigurable Super Cell Metasurface - Analysis 

• Linear parametric sweep of ground plane height 

• Reflection phase tuning range of 300° over a 
height change of approximately 3.5 𝑐𝑚 

• Structure features strong field enhancement 
across capacitive gaps 

• Limited by dielectric breakdown of air (3 𝑀𝑉/𝑚) 

• Power handling of mechanically tunable unit cell 
is theoretically approx. 7 𝑘𝑊/unit cell based on 
the field enhancement at resonance 

Resonance 

Complex Magnitude of Electric Field 

𝑤 = 2.3 𝑐𝑚 

𝑢 = 2.5 𝑐𝑚 

@ 1 𝐺𝐻𝑧 



CONCLUDING REMARKS 



Fabrication Considerations 

• High power tunable metasurfaces are more complicated 
to design and fabricate than their low power 
counterparts due to increased complexity 

• Electrically tunable designs 

– Capacitance fabrication tolerances (∆ 0.1 𝑝𝐹) 

– Enormously complex biasing network 

• Mechanically reconfigurable design 

– Accuracy, speed, and reliability of mechanical components 

– Size, weight, and power considerations of the resulting antenna 
structure 



Summary 

• Examples that demonstrate theoretical methods for extending 
the operating power levels of metasurface reflectarrays have 
been given 

• The proposed designs provide the same utility that has been 
previously demonstrated, however are capable of operating at 
much higher power levels 

 
 

• Investigate additional electrically-tunable alternatives 

• Demonstrate mechanically tunable reflect-array metasurface 

– Fabrication and testing of a static prototype with predetermined 
super cell heights to form gradient phase distribution producing a 
desired reflected beam 

– Investigation of mechanical systems capable of reconfiguring 
ground plane without significant performance impacts 

Future Work 
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